鼠标移到文字上弹出提示层 ● 延吉夜景这里是延吉布尔哈通河两岸 ●

cooltext195261262404738
cooltext195261262404738
鼠标移到文字上弹出提示层 ● 延吉夜景这里是延吉布尔哈通河两岸 ●
 


石墨烯是这样被首次实现的

发表时间:2016-1-21  浏览次数:1164  
字体大小: 【小】 【中】 【大】
石墨烯是这样被首次实现的
2016-01-11 品天下
来源:漫科普(ID:mankepu)

    石墨烯将取代硅,为世界电子科技开创一个崭新的时代!
    石墨烯手机充电时间只需5秒,电池就满档,可以连续使用半个月!
    石墨烯电池只需充电10分钟,环保节能汽车就有可能行驶1000公里!
    什么神奇的石墨烯到底是什么东西?
    石墨烯是世界上最薄、最硬的材料,于2004年问世,发现石墨烯的英国曼彻斯特科学家安德烈·海姆(Andre Geim,AG)和康斯坦丁·诺沃肖洛夫(Konstantin Novoselov)凭借着这一发现获得2010年诺贝尔物理学奖。
所以我们就来认识一下今天的主角——Andre Geim(以下简称AG)。他的科学才华无与伦比。在他的眼中,科研是一个满足自己好奇心的游戏。并且在十几年的时间中,玩耍出了很多惊世骇俗的科学成果,让所有苦行僧一样的科研狗们羡慕不己。
但当他还是一只科研狗的时候,也曾经四面楚歌,苦逼到饭都吃不起的地步。
事实一再印证,命运之神会眷念每一个逗逼。于是,他终于发现了牛B的石墨烯,使人类的科技从硅时代一跃进入碳时代,并为自己赢得了科学家的最高奖——诺贝尔物理学奖。
他曾一无所有,他将拥有一切。他神一般的存在,只为证明一个真理:好奇心才是科学的第一推动力!!!
AG的这张照片看着好有男神范儿,充满学霸的光环。不过,小编觉得他的长相好像一个人。。。
没错!就是《科学大爆炸》中的逗逼霍华德。事实也证明了,AG可能是所有诺贝尔奖获得者中,最具逗逼气质的获奖者了。这事儿我们稍后再提,先说说他苦逼的前半生。
AG在35岁以前,是一个养家糊口都犯难的主儿。
AG上世纪80年代进入俄罗斯科学院攻读固体物理学博士学位。导师给了AG一个不怎么需要花钱的课题,然后。。。AG就花了5年的时间,想着怎么在这个垃圾课题中找出一点有价值的东西。他努力了,并且发表了5篇paper。但一个学术网站的编辑对AG说,他这5年做的研究完全是一坨shi。。。
多年后,AG在回忆这段研究岁月时“深情”地说:“我还是从中学到了一些让我受益终身的东西,那就是绝!对!不!要!让你的学生研究那些已经死了很久的课题方向。”
1987年他拿到自己的博士学位后,进入俄罗斯科学院,开始了一条科研狗的生活。
AG找了个机会跑到英国做博士后,随后几年中又分别去了丹麦、荷兰,其实就是去这些发达国家的实验室里打工挣钱养家糊口。
由于之前一直没有做出什么亮眼的成果,也没有发过什么好paper。所以,AG到哪儿都是一个无名小卒,无人问津。时间一晃,他已经36岁了,基本上一事无成。没有自己的科研团队,没有研究方向,更没有丰厚的科研经费。
如果是在中国,他这样的科研狗已经被很多所谓的专家们在科研上判死刑了,用来作为反面教材教育年轻人要好好听话、老实干活、多发文章。
被中国专家紧握着手,AG只能“呵呵”了
一个偶然的机会,AG成为荷兰一所大学的副教授。为了能专心做科研,不再为五斗米奔波,他选择加入荷兰国藉。防止失联看这类好文请添加小编私人微信号(zwj19960516),小编私人朋友圈更多猛料劲文!吃饭问题解决后,他那被雪藏已久的逗逼气质,渐渐地苏醒了,有如黄河泛滥,一发不可收拾。
他所在的实验室中,有一台能产生20特斯拉的超导磁铁,几乎是人类制造出的最强磁场。嗯。。。这个怎么形容呢,就是比我们日常见到的电磁铁磁性强几十甚至上百倍吧。如果在这样的磁场周边放上刀叉之类的铁器,估计会马上变成小李飞刀。
然后,没有科研经费的AG,就打起了这台超导磁铁设备的主意。
磁学有一个特别有意思的特性,就是当物体在磁场中运动时,物体中会产生与运动方向相反的力,抵抗物体的运动。
嗯,作为漫科普一名坚持不讲科学公式的小编,我是不会告诉你抗磁性是运动的电子在磁场中受电磁感应而表现出的属性的。
大家只要记住一点就够了:所有的物质都有抗磁性,也就是会抗拒被磁场磁化。只不过有些物质的顺磁性或铁磁性太强,如磁铁,将抗磁性掩盖了,从而表现出磁性。另外,由于抗磁性系数不同,产生的斥力大小相差也很大。
那么,磁学的这一个特性,有什么好玩的地方呢?看看下面令人大开眼界的动图。
这个有趣的现象又被称为“羽落术”。这里使用了一块钕磁铁和一只粗铜管。钕磁铁产生磁场,而铜是优良的抗磁性物质。运动的磁场与铜管相互作用,铜内产生感应电流,通过电磁作用产生向上的斥力阻碍了钕磁铁下落。从而,产生画面中重物在空气中缓慢下落的神奇效果!
嗯,我们期待已久的AG终于要登场了。吃饱喝足后,他的逗逼创造力,绝对可以在科学史上写下浓墨重彩的一笔。
于是,他逗逼的往20特斯拉的磁场中倒水。。。没错,就是倒!!!! 水!!!!
这要是在中国,老板看到哪个科研狗胆敢往高级仪器中倒水,一定会让这只科研狗脑子进水。。。
估计没有哪只科研狗敢做出这么胆大妄为的举动,于是,AG成为了AG,而中国的科研狗们继续NG。。。
上帝的秘密就这样被AG发现了。一滴浑圆的水滴,像失去了重力一样悬浮在磁场中。它就在那里,不上不下,不悲不喜,不离不弃。
水为什么会悬浮在磁场中呢?其实,水分子也具有抗磁性,只不过非常小,如果是一般的磁场,产生的斥力与水滴受到的重力相比,完全可以忽略不计。但AG所用的磁场是如此之强,足以使水滴克服地球重力悬浮起来。
当然,作为一个被压抑了多年的科学逗逼来说,AG绝不会满足于把一滴水悬浮在空中,因为那样太不够逗逼精神了!!
生物体内绝大多数都是水份,而且,蛋白质等也是抗磁性的。问题来了:生物如果在强磁场中,会像水滴一样悬浮起来吗?
于是,他把活的生物体也扔到了那个威力巨大的强磁场中。其中,最搞笑的是一只青蛙。
当青蛙被放到磁场中,青蛙的每个原子都像一个小磁针,外界磁场对这些小磁针作用的结果产生了向上的力,如果磁场的强度适当,这力与青蛙受的重力达到平衡,它们就能悬在空中。悬浮的青蛙,也为AG赢得了2000年的搞笑诺贝尔物理学奖。
这只青蛙,大概是第一个没有受外力作用,比如气流等,而能够在地球上悬浮的活体生物了。
嗯,说到这里,大家肯定自然而然地会想到,人体是否也能悬浮在磁场中。从理论上说,是完全没有问题的。利用抗磁原理,只要用足够强的磁场,经过周密的设计,将来就有可能使人体在磁场中悬浮起来。
AG搞笑的本色并未就此停止,他后来做的一系列逗逼科研更是有增无减,甚至为他赢得了真正的诺贝尔奖。
AG另一个牛B的研究,是发明了一种胶带。
嗯,先别急,如果你知道这个胶带的背景,就知道这个发明有多脑洞了。
在电影《谍中谍4》中,阿汤哥曾戴着一双“壁虎手套”,顺着玻璃墙,徒手攀爬世界第一高楼——哈利法塔。
当然,这只是电影的一个桥段,壁虎手套是人们想象出来的。但在自然界中,壁虎爬墙的本事,却真的让人类垂涎三尺。无论是粗糙的树干,还是光滑的玻璃,壁虎都能行走如飞。壁虎为什么有如此神奇的本领?
原来,秘密就在壁虎的脚掌上。
人们曾经以为壁虎的脚掌能在各种材质的墙壁上行走,是由于粘液或脚掌上小吸盘的帮助。但这些假设很快被实验推翻了。简单想一想就能明白,如果壁虎是被粘液或吸盘牢牢地吸附在墙上,它怎么能够灵活地迈步呢?所以,壁虎行走的迷题一直没有很好的解释。
直至2000年,美国科学家用电镜放大观察壁虎的脚掌,发现壁虎的脚掌充满了无数小的毛状物体。由于这些物体比较硬,又称为“刚毛”。那些看似小钩子一样的刚毛末端,实际上是开叉的,每根刚毛都分成了100-1000根更细的绒毛,这些绒毛的尺寸小到纳米级品。
因为这些绒毛如此之小,以至于整体的表面积大大提高。极大的增加了壁虎脚掌的表面积,特别是当壁虎攀在那些粗糙的物体表面时,这些绒毛更能填满那些细小的坑洼。
现在要说的,就是壁虎最牛B的地方了。它根本不是靠人们想像的宏观条件下的力吸附。它依靠的是刚毛上的小绒毛,与墙壁产生的范德华力——也就是说,是它脚掌上的分子与墙壁分子间产生的力!
说到范德华力,是一种发生于分子与分子之间的吸引力。下面的小实验可以让你体会到范德华力的力量。
找两本厚一点的书,最好是纸张薄软一点的,像洗扑克牌一样把两本书的书页一张压一张的叠在一起。全部叠完后用手压一压,然后分别抓住两本书的书脊,试试能把它们拉开吗?把两本书“粘”在一起的力量,就是范德华力。
如果你没有耐心把两本书一页一页的交叠,也可以去买一部新手机。很多人都特别享受揭开新手机屏幕保护膜的那个瞬间,其实那层膜就是靠范德华力“粘”在手机屏幕上的。
相比让原子构成分子的那些作用力,范德华力很小,生活中我们往往不会在意到它的存在。但是这个很小,只是相对来说的。亿万根这样的绒毛足以产生巨大的吸引力,从而可以使得壁虎爬上任何物体表面,甚至玻璃的天花板。有科学家测算,壁虎脚掌上刚毛产生的吸附力,可以达到其体重的50倍。
听到这儿,是不是觉得壁虎超级牛B。人类文明发展了上万年,也就是近一、两百年,才开始认识到原子、分子间力的作用。而壁虎,则早已运用分子间的范德华力吸附在墙上傲娇几百万年了。
说了这么多壁虎,该轮到我们的科研男神AG登场了。
壁虎脚掌这么好玩的课题,当然不会逃脱AG的视线,他一时兴起,就想试试能否做出像壁虎脚掌一样的胶带。这种胶带最大的优势是可以反复使用,而且吸附力强大。未来,人类也可以像壁虎一样自如攀爬高楼,《谍中谍4》中的镜头绝不是梦。
于是,他模拟壁虎脚掌的结构,在一种高分子材料(聚酰亚胺)上进行刻蚀,制造出单个微突起直径为500nm,高2μm,以间隔1.6μm周期性排列的表面。制作了一片小小的胶带。放大后,胶带表面是这个样子的(密集症患者回避~~~):
这种胶带中每0.5平方厘米负重可达300克的物体。如果要把一个人粘在墙上,用一张A4纸大小的胶带就足够了。而且这种胶带可反复使用,被称为“壁虎胶带”。
这一次,他还是不改逗逼本色,把蜘蛛人(模型)牢牢地粘在天花板上。于是。。。世界媒体又沸腾了。。。这是人类为数不多地仿照动物身体微观结构,制造出的神奇材料。
仿生材料学,自此进入研究高潮。
现在,全世界都对AG充满了期待——他又会玩出什么让人眼前一亮的科学成果呢?
哦,顺便说一句,受AG的启发,美国的科学家们已经真正地发明出了“壁虎面板”。并且成功地攀爬上一面二十几米高的高墙。。。是不是有种想立刻爬墙的冲动?
关于壁虎手套的研究,绝对可以拍摄一部不亚于好莱坞科幻大片的科学纪录片。
时间又到了2004年,这一年,AG想玩一次大的。
现代人类对于物质结构已经有了一个相对明确的认知。如果从原子尺度观察物质结构,原子们就是像搭乐高积木一样构建出我们这个千变成化的物质世界。
而在人们所认知的结构中,石墨绝对是一个另类。
石墨的晶体结构是层状的,靠微弱的范德华力把相邻的两层贴合在一起。层与层之间充斥着大量的电子,因此,石墨是良好的导电体。
而单个石墨层,则是碳原子与碳原子相互连结形成正六边形,并延伸成一张无限大的原子网。这张网上的原子连结的是如此结实,以致于这张网比钻石还硬。
有过削铅笔经验的小伙伴们都很清楚,铅笔中的石墨芯是很软的,而且很容易就掰断了。用铅笔书写,其实就是一个将芯上脱落的石墨颗粒留在纸面上过程。
这是因为石墨相邻分子层粘合的力很弱。石墨层很容易发生相互移动或剥离。就像下面这幅图示意的一样。
随着现代化科学仪器的不断进步,人类研究的尺度也越来越小。已经进入到纳米、甚至更小的原子级别。然而,尽管人们对石墨的结构已有了完全的认识,甚至预言了单层的石墨可能会具有非常好的物理性质。但如何把石墨不断地磨薄,薄到只有一个原子的厚度,这个世界难题还是让所有的科学家们望而却步了。
甚至有些科学界的大牛们断言,单层的石墨是不可能独自存在的!所有妄想做出单层石墨的人,都是痴人说梦!
马云的这句话很精辟:梦想还是要有的,万一实现了呢?
于是,AG果断地把一块石墨递给一个研究生:“去,把它磨到最薄!”
那个研究生当时就晕菜了。。。铁杵磨成针已是极致,你居然让我磨到原子量级。。。
于是这个研究生天天苦逼地磨石墨,几个月后,已经磨到最薄,实在磨不下去了。拿来一测量,还有几千个原子层厚,他绝望了。。。于是撒手不干,老子不玩了。
此路不通,AG只好再寻他途。这时,他看到学生用透明胶带贴在石墨表面,就问学生为什么这么做。学生说胶带可以把表面一层脏的石墨撕下来,再用干净的表面来磨。
瞬间,AG的脑洞亮了。他把撕后的胶带放到显微镜下观察,发现胶带上的石墨厚度比那个研究生辛苦磨出来的石墨片薄多了,有些甚至只有几十个原子层厚。
撕!!下!!来!!
撕!!下!!来!!
撕!!下!!来!!
重要的事情说3遍。
于是,史上最简单粗暴,骇人听闻的科学实验诞生了!AG真的反复用透明胶带粘在石墨上,然后一遍又一遍地撕胶布,直到胶带上的石墨越来越薄,直至一个原子的厚度,也就是获得了单层的石墨,又被称为——石墨烯。
在石墨烯中,六边形的原子结构清晰可见
大家应该都有过用胶带粘纸上的错字的经历。而AG制备单层石墨烯的过程与之类似。
AG再次向世人证明,解决具有挑战性的科学问题,往往不需要用高深的理论或复杂的仪器,需要的,更多地是人们对日常生活细致的观察与灵活地运用。
面对用透明胶带撕出来的石墨烯,全世界的科学家毫无保留地献出了他们的膝盖。
拥有搞笑诺贝尔物理学奖的逗逼之神AG,因为率先做出石墨烯并测试了相关的物理性能,获得了2010年诺贝尔物理学奖。这一次,是货真价实的诺贝尔奖。
关于石墨烯,再啰嗦几句。有人把石墨烯喻为人类在21世纪最重要的材料。石墨烯导电性极好,而且几乎透明。未来几年将运用到手机屏中。
而且石墨烯强度极高,秒杀钢铁等材料。已经有人脑洞大开,准备未来用石墨烯修建通往太空的轨道。
AG的故事还远没有结束,全世界的人都在盯着他,未来,他又会带给我们怎样的脑洞与欢乐呢?

来自:龙南 > 《科技领域》

中国石墨烯制造已领先世界 为何还要和英国合作

石墨烯微观结构示意图 石墨烯微观结构示意图
石墨烯电池示意图 石墨烯电池示意图

  随着中国国家主席习近平抵达英国开启为期4天的国事访问,华为也将和英国曼彻斯特大学国家石墨烯研究所签署石墨烯研究项目。虽然英国科学家最早成功制备石墨烯,曼切斯特大学可说是石墨烯的故乡,但中国石墨烯制造已处于世界领先地位,那为何华为还要去和英国人合作呢?

  这要从华为在英国已经取得的成功说起。

  华为在英国

  自2001年华为在英国设立了第一个办事机构以来,华为就与英国公司和研究机构开展了广泛的合作:与沃达丰集团成为合作伙伴,并于唐宁街10号签署战略合作伙伴关系的协议;与英国移动通信运营商EE成为战略合作伙伴;与英国情报机关“政府通信总部”合作,在牛津郡设立了网络安全设施,确保华为在英国出售的电子设备安全可靠;与英国萨里大学达成第五代移动通信系统技术科研合作,在萨里大学创建5G创新中心。

  在投资方面华为也堪称大手笔——华为在雷丁绿园橡树南路300号设立英国分公司总部,在布里斯托尔开设新的科研中心,先后收购了集成光子中心、Neil等科技公司,并加大对这些公司的资金输入力度,扩大公司的规模,进而使华为在英国的科研投入从2012年的3060万英镑扩大至2014年的7840万英镑。从2012年至今,华为已完成对英国投资和采购金额达10.2亿英镑,到2017年,采购与投资总额或超14亿英镑。

  在经济贡献方面,华为在2012年至2014年三年期间,华为对英国经济的贡献为9.56亿英镑,其中包括2.31亿英镑的直接经济贡献、4.35亿英镑的间接贡献以及2.90亿英镑的伴生经济贡献,另外产生约4.11亿英镑的英国税收。

  此外,华为还为英国带来了庞大的社会效益。华为不仅通过在英设立科研机构、并购英国公司直接为当地提供了1000余个高收入科研就业岗位,还通过遍布英国15个地区的采购和供应商渠道间接为英国提供了7000多个就业岗位。更重要的是,华为提供的这些就业岗位不是血汗工厂,全都是优质就业岗位——2014年华为员工人均产值为9.98万英镑,大幅高于英国均值的4.38万英镑。

  难怪,英国官员们常把华为在英国投资、运营、扩张以及科研投入的故事作为案例,反映中英经济科技合作的深度。

  英国为何需要华为

  过去5年,中国在英投资每年平均增长85%。2014年,中国对英直接投资新增51亿美元,投资存量达400多亿美元,在英国的投资已占到中国对欧洲总投资的三分之一。按目前的趋势看,未来10年,中国对英国的投资将达1624亿美元。

  2014年,英国政府提出“北方经济引擎”计划。若要重振北部曼彻斯特、利物浦等老工业城市,未来10年在基础设施建设、房地产、科研投资、高端制造产业等方面的资金缺口将高达5000亿英镑,无论是巨额资金投资,还是大规模基础设施建设,英国很可能需要中国的帮助。

  因此,华为与英国曼彻斯特大学国家石墨烯研究所即将签署的石墨烯研究项目在上述背景下就颇具深意了。对中国而言,该项目既可以学习吸收国外优秀智力成果,缩小和西方的技术差距,又能避免过剩的美元在不断贬值中造成财富缩水。对英国而言,该项目能吸引中国投资,是助推英国“北方经济引擎”计划的一部分,成为英国实现振兴北方地区必然选择,也将帮助英国经济走出当下低迷状态。

  石墨烯为什么这么重要?

  石墨烯是由碳原子组成的单层石墨 ——最早的石墨烯就是用胶带一层一层地把石墨变薄而获得的,是只有一个碳原子厚度的六角型呈蜂巢晶格的平面薄膜。具有非常好的导热性、电导性、透光性,而且具有高强度、超轻薄、超大比表面积等特性,广泛应用于锂离子电池电极材料、太阳能电池电极材料、薄膜晶体管制备、传感器、半导体器件、复合材料制备、透明显示触摸屏、透明电极等方面。

  相对于通过前端设计提升微结构来提高芯片性能,通过后端设计来提升主频显然更加简单粗暴,研发周期也更短(微结构研发一般要3年),更适合商业推广。

  硅基材料集成电路主频越高,热量也随之提高,并最终撞上功耗墙。目前硅基芯片最高的频率是在液氮环境下实现的8.4G,日常使用的桌面芯片主频基本在3G到4G,笔记本电脑为了控制CPU功耗,主频普遍控制在2G到3G之间。

  但如果使用石墨烯材料,那么结果就可能不同了。因为相对于现在普遍使用的硅基材料,石墨烯在室温下拥有10倍的高载流子迁移率,同时具有非常好的导热性能,芯片的主频理论上可以达到300G,并且有比硅基芯片更低的功耗——早在几年前,IBM在实验室中的石墨烯场效应晶体管主频达155G。

  因此,在前端设计水平相当的情况下,使用石墨烯制造的芯片要比使用硅基材料的芯片性能强几十倍,随着技术发展,进一步挖掘潜力,性能可能会是传统硅基芯片的上百倍!同时还拥有更低的功耗。

  石墨烯在通信领域的应用

  也许有人要说,华为是做通信的,又不是卖CPU的,芯片性能强关通信什么事啊?

  其实,通信产品里有大量芯片,基站设备的DSP,路由器、调制解调器、交换机、手机等产品都需要芯片,而性能更强的芯片也就意味着更强的数据处理能力,意味着更快的通讯速度。

  举例来说,目前主流的4G系统基站虽然已经采用了负责基带处理的BBU+负责射频的RRU通过光纤拉远的架构,但由于机房站址资源日益稀缺和高成本,将BBU集中设置以节省机房的需求越来越强烈,同时也要求对基带资源共享、集中调度等功能的实现。

  由于基带信号对带宽和各项处理资源的消耗很大,现有芯片和背板处理速度根本无法实现更大规模的基带资源集中调度和共享,同时在散热、功耗等方面也面临很大挑战。

  若采用石墨烯材料,不但芯片处理能力、数据交换速率能得到大幅提升,石墨烯良好的导热、导电和耐温特性也使得在散热、功耗方面的要求降低,进而实现处理能力达到上万载频的集中式基带资源池。

  未来无线通信技术无疑以满足高速数据业务为主,而传统的宏蜂窝技术已经无法满足应用,必然走向宏微结合的异构网络架构,引入大量smell cell 网元以满足室内以及热点场景的覆盖和容量需求,如微站、Femto。

  但随着这些网元的引入,改变了原有宏站的网络拓扑结构,产生大量新的干扰场景,必须通过引入各种站间、宏微协同等技术予以消除,比如采用协同多点传送和接收技术,但会带来各种协同算法加载后的大量复杂计算对资源的消耗,而基于石墨烯材料的基带芯片大量应用,其强悍的运算能力将使这些原本需要海量运算能力的技术和算法具有可操作性。

  石墨烯也可以作为天线的材料。美国佐治亚理工学院无线宽带网络实验室提出石墨烯无线天线构想,该构想中,由石墨烯制成的天线以1000GHz的频率正常工作,远超目前常规的天线。如果这个构想成为现实,那么就意味着更多高频段的频谱资源可以被开发出来用于未来的无线通信系统,从而提供更大的系统带宽和吞吐速率。

  未来,5G通信的特性就是“万物互联”,具有热点高容量、低功耗大连接、低时延高可靠等特点——在人口密集区为用户提供1Gbps用户体验速率和 10Gbps峰值速率;具备超千亿网络连接的支持能力,满足100万/km2连接数密度指标要求;在车联网、工业控制等垂直行业的特殊应用需求,为用户提供毫秒级的端到端时延和接近100%的业务可靠性保证。

  因此,大规模天线阵列、超密集组网、新型多址技术和全频谱接入等技术就成为5G无线技术的发展方向,而这都离不开石墨烯材料的广泛应用。同时,手机要拥有更强的续航能力,更快的运算速度,更好的拍照效果,更快的上网速度,更好的屏幕显示效果也离不开石墨烯。相信这也是任正非在多次讲话中都无比重视石墨烯的原由所在。

  石墨烯材料对手机意义重大

  对于华为这几年的另一项拳头产品——手机来说,石墨烯更能带来翻天覆地的变化:

  手机中有大量的芯片,比如音频芯片、视频芯片、电源管理芯片、能够获得更好拍照效果的ISP芯片、WIFI芯片、CPU、GPU、基带(某些厂商可能会将这些芯片集成为SOC)等等,如果这些芯片都使用石墨烯材料制造,那么手机芯片的性能将会大幅提升,同时功耗将大幅下降。

  一直以来,智能手机的续航能力饱受诟病。如果将石墨烯用于电池的两极,续航能力会是普通电池的十多倍,智能手机一天一充将成为历史,充电宝也将被新技术所淘汰。如果用石墨烯制作电容装置,它的充放电速度是锂电池100倍——1000倍,几分钟就能完成智能手机充电。

  石墨烯具有轻、薄、几乎完全透光、强度大、柔韧性好等特点,和现在的手机屏幕相比,不仅更薄、透光性更好,而且还具有更好的韧性,更不容易破损,甚至还能做成能够卷起的柔性屏幕。因此,石墨烯屏幕比现在用的屏幕拥有更好的用户体验。

  石墨烯仅吸收2.3%的光,并使所有光谱的光均匀地通过,具有非常好的透光性。因此它还是优质的感光元件的制造材料,使用石墨烯制造的感光元件,不仅更薄,还更便宜——如果量产,成本仅为传统感光元件的五分之一。据新加坡一个科研团队展示的科研成果,石墨烯感光元件的性能比传统传感器强1000倍——在昏暗的光线环境中, 这类传感器依然能够捕捉到较为清晰的物体影像。

  可以想象如果华为手机采用了石墨烯技术,那么,手机将发生一次革命,正如同智能机对功能机的革命。

  中国石墨烯制造处于世界领先地位

  也许有人会说这么好的东西,那价格铁定死贵啊,我等老百姓何时才能用上啊……

  其实石墨烯一点也不贵,因为全球第一条和第二条真正实现规模化、低成本、高品质的石墨烯生产线就在中国!在2013年底,宁波墨西科技有限公司和重庆墨希科技有限公司先后建成年产300吨石墨烯生产线和年产100万平米的生产能力的石墨烯薄膜生产线,并将石墨烯的制造成本从每克5000元降至每克3元。

  今年年初,浙大教授高超成功研发了一种新型、廉价、无毒的铁系氧化剂,使石墨烯制备过程快、成本低、无污染,适用于工业化大规模制备。《自然—通讯》审稿人对该技术的评价是“该方法对石墨烯未来的进一步应用具有重要意义。”

  在石墨烯的应用上,中国研究人员也已拿出了有分量的成果。中科院重庆绿色智能技术研究院成功制备出国内首片15英寸的单层石墨烯显示屏,该项技术被应用于今年上市的一款名为“开拓者α”的手机,该手机在采用由中国科学院重庆绿色智能技术研究院和中国科学院宁波材料技术与工程研究所开发的石墨烯触摸屏、电池和导热膜等新材料后,手机触控屏幕不偏色不泛黄,色彩真实、纯净,通透性也比传统屏幕好,手机充电速率提高了40%,电池寿命延长了50%,电池的能量密度也增加10%。

  为何华为要去和英国人合作

  既然中国石墨烯制造处于世界领先地位,那为何华为要去和英国人合作呢?

  国内研究所和企业虽然也有电容、触控屏、涂料、导热材料、复合材料等产品,但更偏重石墨烯制造,是原材料生产厂商。

  要将石墨烯用于电池电极材料、薄膜晶体管制备、传感器、半导体器件、复合材料制备,单凭能制造石墨烯显然是不行的。举例来说,要将石墨烯用于芯片制造,就必须在石墨烯—硅之间嵌入肖特基管。目前,还未听闻有国内企业在这方面有比较成熟的技术和产品。

  而英国曼彻斯特大学的海姆和诺沃肖洛夫早在2004年就用胶带纸粘贴法成功制备石墨烯,海姆和诺沃肖洛夫也因此获得2010年度诺贝尔物理学奖。目前,由两人提出的胶带纸粘贴法演化而来的机械剥离法已成为实验室制备石墨烯的一种常用方法。

  作为最早成功制备石墨烯的机构,英国曼彻斯特大学一直深耕于该领域,不仅有较深的技术积累,更是全球石墨烯科研活动的中心。

  今年的“石墨烯周”活动中,来自近40个国家的650多名科学家和产业界人士出席了该校这项活动,举办90场专家会议,涵盖的15个主题涉及石墨烯及相关二维材料和异质结构、72人次口头报告和350个招贴海报。足见曼彻斯特大学在该领域的学术之活跃。

  在资金方面,英国政府对曼彻斯特大学也是予取予求——投资6100万英镑于2015年春建成曼彻斯特大学石墨烯研究院着力于打造新的尖端石墨烯研究设施,以开发和维持英国在石墨烯及有关2-D材料方面的世界领先地位。

  从科研成果转化来说,选择曼彻斯特大学进行合作也早有可借鉴的经验。已有超过35个来自世界各地的企业选择与曼彻斯特大学合作与石墨烯有关的项目,这不仅让曼彻斯特大学合作从合作伙伴手中获得4亿英镑科研经费,更将实验室的技术成果转化成商品。

  所以,华为选择与英国曼彻斯特大学国家石墨烯研究所进行合作,既能利用此前在英国大量科研投入的基础和经验,又能在成果转化上具备国际视野,这项投资将让这家中国巨头站到世界石墨烯科研的最前沿。

(新浪军事)

文章评论
发表评论:(匿名发表无需登录,已登录用户可直接发表。) 登录状态: 未登录,点击登录